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We investigate the optical properties of a Coulomb-coupled double-quantum dot system excited by coherent
light pulses. Basic effects of Coulomb coupling regarding linear and nonlinear optical processes are discussed.
By numerically solving the Heisenberg equation of motion we are able to present the temporal evolution of the
system’s density matrix for a wide range of coupling parameters. The two main coupling effects in dipole
approximation, biexcitonic shift and Förster energy transfer, are investigated and their qualitative and quanti-
tative influence on absorption spectra, Rabi oscillations, and single- and two-pulse excitation is discussed. We
present simulated differential transmission spectra to allow for comparison with recent experimental studies.
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I. INTRODUCTION

Semiconductor quantum dots have been intensively stud-
ied due to the various ways of using them in electro-optical
devices such as lasers or light-emitting diodes �LED’s�.1
Apart from possible applications they represent important
model systems of three-dimensional electron confinement in
semiconductors. With regard to optical properties they com-
bine atomiclike behavior like discrete spectra with that of
bulk semiconductors like excitonic features.2 Furthermore,
the discrete energy states of electrons confined in quantum
dots also mark them as promising candidates for basic build-
ing blocks of quantum computers. There exists a wide range
of suggestions how to identify quantum mechanical states in
a quantum dot as qubits and how to utilize interaction
mechanisms to implement basic quantum operations.3–7 Es-
pecially small optical linewidths at low temperatures8 and
the possibility of coherent optical control of single quantum
dots via Rabi oscillations9–11 seem to make quantum infor-
mation applications using semiconductor quantum dots fea-
sible. One of the most promising proposals of an all-optical
implementation of quantum information processing involves
Coulomb coupled quantum dots driven by coherent light
pulses.7

Therefore an investigation of the dynamical behavior of
two coupled quantum dots under the influence of coherent
laser pulses, taking into account all effects of the Coulomb
interaction between the dots, is of special importance for
quantum information applications. Previous theoretical stud-
ies have shown how the CNOT operation can be implemented
in a two-quantum dot system if the biexcitonic shift is en-
hanced with additional fields.12 There, the Förster transfer
was assumed to be negligible. Other efforts have been di-
rected at comparing methods of generating entangled states
in the system and calculating the Coulomb matrix elements
for different quantum dot geometries.6

In this paper, we present a theoretical analysis of the basic
properties of a quantum dot system consisting of two quan-
tum dots that are coupled via Coulomb interaction and simul-
taneously excited by coherent light pulses. The Coulomb in-

teraction is treated in dipole approximation, leading to the
known effects of a biexcitonic energy shift and Förster en-
ergy transfer. The strength of the corresponding coupling ma-
trix elements is known to depend strongly on parameters like
the quantum dot material, structure, and external parameters
like, for example, electric fields.6 We study the influence of
the different coupling effects on coherent phenomena such as
Rabi oscillations13 and pulsed excitation of the system for a
wide range of parameters, thereby including different geom-
etries and quantum dot types like interface quantum dots14 or
self-assembled quantum dots.1,15 Furthermore, a pump-probe
setup is modeled to determine the effects of Coulomb cou-
pling on nonlinear optical spectra obtainable by differential
transmission spectroscopy.16 Knowledge of the relative im-
pact of different interaction parameters on the spectra is im-
portant for the interpretation of experimental results such as
Ref. 16. Therefore the differential transmission spectra are
calculated for different regimes of Coulomb coupling where
either one of the two coupling effects can be neglected or
both have to be taken into account.

The paper is organized as follows: first, we introduce the
theoretical framework, specifying the Hamiltonian and the
way the Coulomb interaction is treated. Then, the equations
of motion in rotating-wave approximation are derived and
solved numerically. Results regarding coherent excitation of
the system, especially Rabi oscillations, energy transfer be-
tween the dots, and differential transmission spectra, are dis-
cussed.

II. HAMILTONIAN

The system described here consists of two semiconductor
quantum dots. The electrons confined in these quantum dots
interact both with the external coherent light field and with
each other via Coulomb interaction. Restricting the investi-
gation to the low-temperature regime, the coupling to
phonons of the surrounding semiconductor material is omit-
ted here.17,18 It is assumed that there is no overlap between
the electron wave functions of different quantum dots; i.e.,
no electronic coupling or tunneling occurs. The approach to
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map the full many-body problem on a discrete level scheme
for the strongly confined excitons is supported by various
experimental and theoretical studies; for instance, see Ref.
19. In our investigation, we want to focus on the case of
optical pulses resonant to the lowest possible electronic tran-
sition between valence and conduction band states in each of
the quantum dot—i.e., quantum dots as two-level systems.
For quantum dots smaller than the exciton Bohr radius and
resonant excitation of the energetically lowest excited state it
is common to model the quantum dot system as a two-level
system.20 Such a model system can be realized by using
spectrally narrow polarized pulses to avoid single-dot biex-
citon excitation and the excitation of higher confined or even
continuum states.

The electrons in the individual quantum dots are de-
scribed using the effective mass approximation.21 The
Heisenberg field operators �† ,� are products of envelope
functions �� and Bloch functions u� at wave number k=0
having the form ��,n

† =��,nu�,na�,n
† , with a�,n

† being the cre-
ation operator and a�,n the destruction operator of an electron
in level � in the nth quantum dot. The Hamiltonian He for
noninteracting electrons with energy levels �i then reads as

He = �
�,n

��,na�,n
† a�,n. �1�

Since we are interested in optical transitions between con-
duction ��=c� and valence band ��=v�, we restrict the in-
vestigation to two-level-systems without taking spin degen-
eracy in each quantum dot into account �fixed circular
polarization�.

The electron-light interaction is treated in two different
ways in our work: excitation of the system with a coherent
laser source is treated in a semiclassical approach, where the
electric field is described as a nonquantized vector field,
while we use the completely quantized interaction Hamil-
tonian to include at least radiative damping in our calcula-
tions to provide a source of dephasing for the excited zero-
phonon line at low temperatures.17 The semiclassical part of
the Hamiltonian in dipole approximation is given by

He-l = − E�t� · dcv�
n

�ac,n
† av,nXcv,n + av,n

† ac,nXvc,n� , �2�

with the classical light field E�t�, the dipole matrix element
dcv=Vu

−1�d3r̃uc
*�r̃�er̃uv�r̃� for the transition between the va-

lence and conduction bands, and the volume of the unit cell,
Vu. The spatial extension of the quantum dots results in fac-
tors Xij,n=�Vdot

�i,n
* �r�� j,n�r�dr in the Hamiltonian.

The quantized electron-photon interaction is given by

He-ph = �
n,k

Gcv,k�ac,n
† av,n�ck + c−k

† � + av,n
† ac,n�c−k + ck

+�� ,

�3�

where ck �ck
†� are the destruction �creation� operators of pho-

tons of mode k �dispersion �k� and Gcv,k is the interaction
matrix element. Here, the photons are treated as a heat bath,
with the Hamiltonian of the free photons given by Hph
=�k��kck

†ck.

FIG. 1. Nonidentical quantum dots: linear absorption spectra
versus detuning to the lower quantum dot resonance for the lower-
energy quantum dot �top� and higher-energy quantum dot �bottom�,
calculated for different values of the Förster matrix element. The
corresponding analytically calculated positions of the absorption
lines are indicated as vertical lines.

FIG. 2. Identical quantum dots: linear absorption spectra versus
detuning to the lower quantum dot resonance for different values of
the Förster matrix element and a radiative damping of �
= �500 ps�−1. There is just one resonance, since the lower resonance
cannot be excited optically.
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FIG. 3. Resonant excitation of the lower resonance: temporal
evolution of electron density �top� and polarization �bottom� of the
lower-energy �left� and higher-energy �right� quantum dot during
excitation with a 5-ps � pulse.

FIG. 4. Resonant excitation of the higher resonance: temporal
evolution of electron density �top� and polarization �bottom� of the
lower-energy �left� and higher-energy �right� quantum dots during
excitation with a 5-ps � pulse without radiative damping.
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The Coulomb interaction manifests itself as an additional
term Hc in the Hamiltonian which in second quantization
picture can be written as

Hc =
1

2 �
a,b,c,d

Vabcda�ana

† a�bnb

† a�cnc
a�dnd

, �4�

with the Coulomb matrix element

Hc,abcd =
e2

8��0
� ��a,na

* �r���b,nb

* �r����c,nc
�r���d,nd

�r��

�r − r��

	 u�a,na

* �r�u�b,nb

* �r��u�c,nc
�r�u�d,nd

�r��d3rd3r�.

�5�

The total Hamiltonian of the system is obtained by sum-
marizing the part of the noninteracting electrons and photons
and the interaction contributions:

H = He + Hph + He-l + He-ph + Hc. �6�

III. DENSITY MATRIX ELEMENTS

In the second-quantization picture an electron state �i	 is
given by �i	=ai

† �0	, where �0	 is the vacuum state and ai
† the

creation operator for an electron in state i. The basis for the
single-electron state is spanned by the set 
�i	�. The density
matrix elements 
ij = �i �
 � j	 of the single electrons in quan-
tum dot n are given by the expectation values of destruction
and creation operator products:


ij,n = �aj,n
† ai,n	, i, j � 
c,v� . �7�

We refer to the diagonal elements as electron population den-
sities ni,n= �ai,n

† ai,n	 and to the nondiagonal elements as mi-
croscopic coherences or microscopic polarizations 
cv,n
= �av,n

† ac,n	. For the two-level-system, according to their defi-
nition, the electron operators fulfill the identity

ac,n
† ac,n + av,n

† av,n = 1n, �8�

where 1n denotes the identity acting on the states of quantum
dot n.

For a system of two electrons, the basis states are the
tensor products of the single-electron basis states: �ij	= �i	
� �j	. The density matrix elements are then given by four-
operator expectation values:


klij,n1n2
= �aj,n1

† ai,n2

† al,n2
ak,n1

	 . �9�

By using Eq. �8� one can see that two-operator expectation
values are obtained from four-operator expectation values by

�ai,n1
† ac,n2

† ac,n2aj,n1	 + �ai,n1
† av,n2

† av,n2aj,n1	 = �ai,n1
† aj,n1	 .

�10�

This identity shows that the density matrix elements of an
electron in the first quantum dot result from the full density
matrix of the system by taking the partial trace over the
second quantum dot and vice versa.

In the following considerations we fix n1=1 , n2=2 in the
density matrix elements 
klij,n1n2

, Eq. �11�. Therefore, the in-
dices n1 ,n2 are omitted in the equations.

Optical excitation phenomena are described via micro-
scopic coherences, Eq. �7�, from which the macroscopic po-
larization P=�ndcv
cv,n+dcv
cv,n

* of the system and the linear
absorption spectrum ���� can be obtained by

���� � Im�P���/E���� . �11�

IV. DIPOLE APPROXIMATION OF COULOMB MATRIX
ELEMENTS

The Coulomb interaction potential is treated in a dipole
approximation. For this we perform a Taylor series expan-
sion of the 1/ �r−r�� term in the matrix elements in Eq. �5�.
In doing so we introduce the reference point R and the vector
r̃=r−R. The wave functions consist of two terms, one �the
Bloch function part u�� varying on the scale of the unit cell
and another �the envelope function ��� varying on the meso-
scopic scale of the quantum dot. Therefore, for evaluating
the Taylor expansion two different length scales �correspond-
ing to the two wave functions� have to be considered:

�i� Long-range expansion: the reference point R=R0�R
=R0�� lies within the first �second� quantum dot; r̃0=r−R0

varies on the mesoscopic length scale within the quantum dot
radius. The variation in the unit cell is ignored. The resulting
form of the matrix elements is

Vabcd =
1

8��
� d3r̃0d3r̃0� 1

R12
−

1

R12
3 R12e�r̃0 + r̃0��

+
er̃0 · er0�̃

�R12�3
− 3

�R12 · er̃0��R12 · er̃0��
�R12�5

*

�
· ��ana

* �r̃0���bnb

* �r̃0����cnc
�r̃0���dnd

�r̃0���a,�c
�b,�d

.

�12�

Here we have introduced R12= �R0−R0�� as the quantum dot
distance. The form of Vabcd is analogous to the dipole-
interaction energy term of classical electrodynamics. The or-
thogonality of the Bloch functions has caused a band index
diagonality, so this expansion results in diagonal matrix ele-
ments.

In the following we will restrict the discussion to the
dipole-dipole-interaction term �*�:

Vabcd =
1

8��
� d3r̃0d3r̃0�� er̃0 · er0�̃

�R12�3
− 3

�R12 · er̃0��R12 · er̃0��
�R12�5

�
	��ana

* �r̃0���bnb

* �r̃0����cnc
�r̃0���dnd

�r̃0���a,�c
�b,�d

. �13�

�ii� Short-range expansion: the reference point R=RG is a
lattice vector and the vector r̃G varies on the length scale of
the unit cell. In the unit cells the envelope functions have a
constant value. This leads to the following expression for
dipole-dipole term of the matrix elements:
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Vabcd =
1

8��
� d3RGd3RG��d�a�c

· d�b�d

�RG − RG� �3

− 3
�RG − RG� � · d�a�c

�RG − RG� � · d�b�d

�RG − RG� �5
�

	��ana

* �RG���bnb

* �R����cna
�RG���dnb

�RG� � . �14�

These matrix elements are nondiagonal since the dipole
matrix elements d�1�2

can be assumed to be zero for identical
band indices.

Before a numerical approach to the full interacting sys-
tem, we develop some analytical insight into the eigenstates
and eigenenergies of the coupled quantum dot system.

V. COULOMB INTERACTIONS IN THE TWO-ELECTRON
BASIS

For a matrix representation of the Hamiltonian, following
the formalism of Lovett et al.,6 we define the excited ��1	�
and ground ��0	� electron states as a basis in each quantum
dot. In our two-level system they correspond to the existence

on nonexistence of an electron-hole pair in this quantum dot.
The basis for the two electron states can then be represented
by the set ��00	 , �10	 , �01	 , �11	�. The matrix elements Vijkl

= �ij �Hc �kl	 of the Coulomb operator then form the interac-
tion matrix

V =�
V0000 0 0 0

0 V1010 V0110 0

0 V1001 V0101 0

0 0 0 V1111

� . �15�

Here, we have assumed V1100=V0011=0, since this element
represents a Coulomb-induced transition between the states
�00	 and �11	, which violates energy conservation. Also,
when applying the rotating-wave approximation �cf. Sec.
VII� the terms caused by this matrix element do not contrib-
ute to the equations of motion. In the following we refer to
the diagonal elements Vijij as Vij and to the nondiagonal term
V0110 �=V1001, assuming V0110 is real� as VF, the Förster ma-
trix element, since it represents the Förster energy transfer.

The Hamiltonian matrix without electron-light interaction
terms is then given by

He + He−e =�
��0 + V00 0 0 0

0 ��0 + � �1 + V10 VF 0

0 VF ��0 + � �2 + V01 0

0 0 0 ��0 + � �1 + � �2 + V11

� . �16�

Here, we introduced ��0=�v1+�v2 , ��1=�c1−�v1, and
��2=�c2−�v2.

The main effect caused by the Coulomb interaction can be
seen if this Hamiltonian is diagonalized. The corresponding
eigenvalues ��i� and eigenvectors ��i� are

��1	 = �00	, �1 = � �0 + V00,

��2	 = �c1�10	 − c2�01	�, �2 = � �0 + � �1 + V10

+
1

2
�� − ��2 + 4VF

2� ,

��3	 = �c2�10	 + c1�01	�, �3 = � �0 + � �1 + V10

+
1

2
�� + ��2 + 4VF

2� ,

��4	 = �11	, �4 = � �0 + � �1 + � �2 + V11, �17�

where �= ��2− ��1+V01−V10 is the difference of the
single-excitonic energies in the quantum dots ��2��1�. The
factors c1 ,c2 depend on the matrix elements.

c1 = �� + ��2 + 4VF
2��4VF

2 + �� + ��2 + 4VF
2�2�−1/2,

�18�

c2 = 2VF�4VF
2 + �� + ��2 + 4VF

2�2�−1/2. �19�

The diagonalization shows how the two Coulomb coupling
effects arise: due to the interaction the old single-exciton
basis states ��01	 and �10	� superimpose to form the new
states ��2	 and ��3	. They represent states where the excita-
tion is not completely localized in one of the two dots any-
more. As a consequence, if the system is prepared in, for
example, the state ��	= �01	, in the new basis this state is a
superposition of the states ��2	 and ��3	: ���0�	=a ��2	
+b ��3	 with �a�2+ �b�2=1. Due to the differing energies
�2 ,�3, the state becomes time dependent: ���t�	
=ae�−i�2/��t ��2	+be−�i�3/��t ��3	. In this case the exciton en-
ergy oscillates between the first and second quantum dots:
Förster energy transfer occurs.

As a consequence, the excitation energies for the creation
of a single exciton change: the energy needed to create the
lower-energy exciton is given by ��1+V10−V00+ 1

2 ��
−��2+4VF

2� instead of ��1 and the one needed to create the
higher-energy exciton is given by ��1+V10+ 1

2 ��
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+��2+4VF
2� instead of ��2. In linear absorption spectra the

distance between the two lines of different quantum dots
increases with rising VF, as will be shown in Sec. VI.

Furthermore, the energy level of the state �11	 changes;
the energy needed to excite a second exciton in the system
may be different from the energy needed to create that exci-
ton in the absence of the first. This difference is called the
biexcitonic shift, given by �E=V11−V10−V01+V00.

VI. HAMILTONIAN MATRIX INCLUDING ELECTRON-
LIGHT INTERACTION

The analytical diagonalization discussed above results if
one neglects the electron light interaction term in the Hamil-
tonian. When including He-l, the full Hamiltonian is not di-
agonal in the basis 
��i	� anymore. Displayed in the basis

��i	�, the full Hamiltonian has the form

H =�
�1 �A �B 0

�A �2 0 �B

�B 0 �3 �A

0 �B �A �4

� , �20�

with the Rabi frequency �= Ẽ�t� ·dcv /� and the normaliza-
tion factors

A =
− 2VF + � + ��2 + 4VF

2

�2�4VF
2 + ��� + ��2 + 4VF

2�
, �21�

B =
2VF + � + ��2 + 4VF

2

�2�4VF
2 + ��� + ��2 + 4VF

2�
. �22�

This Hamiltonian has the same structure as that for the
uncoupled four-level system interacting with a coherent light
field, apart from the occurrence of the factors A and B. Yet

the factors A and B in the Hamiltonian represent a rescaling
of the Rabi frequency �, thus changing the pulse area that is
necessary to obtain a full Rabi oscillation in the new level
scheme. This renormalization results in a change of the pe-
riod of Rabi oscillations in the system. If the resonance en-
ergies differ, the period of the higher resonance is lowered,
while the one of the lower resonance is extended.

For identical quantum dots ��=0� the factor A vanishes,
while the factor B has the value B=�2, representing a Rabi
oscillation whose period is extended by the factor �2. The
basis states in this case have the form

��2	 =
1
�2

��01	 − �10	� , �23�

��3	 =
1
�2

��01	 + �10	� . �24�

The transition energies for the transition from the ground
state ��1	 to the single-excitonic states ��2	 , ��3	 are given
by �12= ��1+V10−V00− �VF� and �13= ��1+V10−V00+ �VF�,
respectively, and for the transition from the single-excitonic
to the biexcitonic state ��4	 by �24= ��1+ �VF � +V11 and

FIG. 5. Time evolution of electron densities of both quantum
dots during excitation with a 5-ps � pulse that is resonant to the
higher resonance. The inset shows the electron density of the
higher-energy quantum dot and the sum of both densities around the
maximum.

FIG. 6. Single-pulse excitation with a 5-ps � pulse of identical
quantum dots. Top: strong Coulomb coupling �VF=0.1 meV, V11

=5 meV�. Both density and polarization are constant after the exci-
tation. Bottom: weak Coulomb coupling �VF=0.1 meV, V11=0�.
The polarization oscillates, the density after the excitation is
constant.
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�34= ��1− �VF � +V11. The vanishing factor A implies that the
state ��2	 cannot be excited by the electric field in dipole
approximation. The lower resonance resembles a dark
state.22 Therefore there is only one single-exciton resonance
that can be optically excited for identical quantum dots.

VII. EQUATIONS OF MOTION

The system’s temporal evolution is described according to
the Heisenberg equation of motion for the electron operators.
We calculate the equations of motion for the population den-
sities ni,n and the microscopic coherences 
cv,n of the indi-
vidual quantum dots labeled by the index n. They are
coupled to the density matrix elements of the electrons in the
two quantum dots 
ijkl.

The quantized electron-light interaction is treated in Mar-
kovian approximation, which results in radiative damping
terms of the electronic density matrix elements. In this way
we compute the radiative damping terms for all matrix ele-
ments. For the two-operator elements—i.e., the microscopic
coherence and the electron density—these correspond to the
usual phenomenological damping terms. The radiative damp-
ing of the four-operator matrix elements, however, has to be
calculated in this way, since this cannot be obtained phenom-
enologically. All further impact of transversal coupling is
discussed in future work. Especially, all higher photon cor-
relations are neglected, since in our investigation the classi-
cal laser fields dominate the dynamics. Since only one
electron-hole pair is excited in each quantum dot, the expec-
tation values of six-operator terms resulting from the Cou-
lomb interaction are zero. Therefore the associated system of
equations is closed and can be solved numerically. Further-
more, the density matrix element is self-adjoint, and due to
the identity, Eq. �10�, the set of 20 equations can effectively
be reduced to 9. Since the diagonal matrix elements solely
shift the resonance energies resulting in the effect of the
biexcitonic shift �E=V11−V10−V01+V00, we neglect the di-
agonal terms except V11, which then resembles the biexci-
tonic shift in our treatment. To apply the rotating-wave ap-
proximation �RWA� we transform into a frame rotating with
the frequency �0.13 The transformation of the density matrix
elements to the rotating frame �marked by a tilde ���� is
made by 
cv,i= 
̃cv,ie

i�0t, 
vccc= 
̃vccce
−i�0t, 
cvcc= 
̃cvcce

−i�0t,
and 
vvcc= 
̃vvcce

−2i�0t. The electric field is assumed to have

the form E�t�= Ẽ�t�cos��Lt�. Then the set of equations in the
rotating frame takes the form

�t
̃vc,1 = �− i��1 − �0� − ��
̃vc,1 − 0.5i�*�t�*�nv,1 − nc,1�

+ � iVF

�
��− 
̃vc,2 + 2
̃ccvc

* � − 2i
V11

�

̃cccv

* , �25�

�t
̃vc,2 = �− i��2 − �0� − ��
̃vc,2 − 0.5i�*�t�*�nv,2 − nc,2�

+ � iVF

�
��− 
̃vc,1 + 2
̃cccv

* � − 2i
V11

�

̃ccvc

* , �26�

FIG. 7. Rabi oscillation of electron density with �dotted curve�
and without �solid curve� Förster coupling for excitation of the
lower resonance �top row� and excitation of the higher resonance
�bottom row�. Left: upper electron density of the lower-resonance
energy quantum dot, Right: upper electron density of the higher-
resonance energy quantum dot.
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�tnc,1 = ��− nc,1 − nc,1
* � − 0.5i��*�t�*
̃vc,1

* − �*�t�
̃vc,1�

−
iVF

�
�
̃cvcv − 
̃cvcv

* � , �27�

�tnc,2 = ��− nc,2 − nc,2
* � − 0.5i��*�t�*
̃vc,2

* − �*�t�
̃vc,2�

−
iVF

�
�
̃cvcv

* − 
̃cvcv� , �28�

�t
cccc = − 4�
cccc − 0.5i��*�t�*�
̃cccv + 
̃ccvc� − �*�t��
̃cccv
*

+ 
̃ccvc
* �� , �29�

�t
̃cvcv = �− i��2 − �1� − 2��
̃cvcv + 0.5i��*�t��
̃vc,2 − 2
̃ccvc
* �

+ �*�t�*�− 
̃cv,1 + 2
̃cccv�� +
iVF

�
�− nc,1 + nc,2� , �30�

�t
̃cccv = − i�− �1 + �0 − 2
V11

�
� − 3��
̃cccv + 0.5i��*�t�

	�nc,2 − 2
cccc + 
̃cvcv� − �*�t�*
̃ccvv� − � iVF

�
�
̃ccvc,

�31�

�t
̃ccvc = − i�− �2 + �0 − 2
V11

�
� − 3��
̃ccvc

− 0.5i
�*�t�*
̃ccvv − �*�t��
̃cvcv
* + �nc,1 − 2
cccc���

− � iVF

�
�
̃cccv, �32�

�t
̃ccvv = �− i− �1 − �2 + 2�−
V11

�
+ �0�� − 2��
̃ccvv

− 0.5i�*�t��2
̃ccvc + 2
̃cccv − 
̃vc,2
* − 
̃vc,1

* � , �33�

with the Rabi frequency �*=
Ẽ�t�·dcv

� ei��L−�0�t. The damping
constant � results from the Markovian fully quantized

electron-light interaction and is given by �=�
Gcv

2

�2 nph, where
nph is the density of phonon states. For the numerical calcu-
lations the RWA frequency �0 is set to �1.

VIII. RESULTS: OPTICAL PROPERTIES

An ensemble of semiconductor quantum dots shows a dis-
tribution in size and therefore resonance energies that depend
on the material and the manufacturing process. Regarding
the optical properties of two adjacent quantum dots during
laser excitation, the resonance energy difference is an impor-
tant quantity. Selective excitation of the dots, for example, is
very difficult to obtain for quantum dots with small energy
difference. To emphasize the effect of the resonance energy
difference, we contrast two situations: first, a system of two
quantum dots with a difference in resonance energies of �
=10 meV. That difference allows a spectrally selective exci-

tation of the single dots with picosecond pulses as utilized in
most of the situations investigated here. Second, we compare
the nonidentical dots to a system of two identical quantum
dots to understand an idealized theoretical model system.

The radiative single-dot damping constant used for calcu-
lating the linear and nonlinear optical spectra is taken to be
�= �500 ps�−1, as measured in low-temperature experiments.8

Depending on various parameters, the Coulomb matrix
elements have been shown to reach values of up to a few
meV for the biexcitonic shift and the Förster matrix
element.6,12 Since we want to investigate the general effects
of the Coulomb coupling instead of describing a special
quantum dot structure, we mostly show results for this high-
est range of realistic values of the matrix elements to empha-
size the effect of Coulomb interaction here.

A. Linear optics: Absorption spectra

We first investigate the �spectral� properties of the system
under the influence of a weak laser pulse by calculating lin-
ear absorption spectra. In linear optics, the biexcitonic con-
tribution V11 that shifts the resonance energy of the biexci-
tonic transition cannot be observed since it is a nonlinear
effect and therefore will not be considered in this section. In
contrast to that, the Förster coupling leads to new resonance
energies of the single-excitonic transitions being observable

FIG. 8. Rabi oscillation of the upper electron density with and
without Förster coupling for identical quantum dots. The pulse is
resonant to the higher-energy resonance. Top: vanishing biexcitonic
shift. Bottom: strong biexcitonic shift �V11=1 meV�.

J. DANCKWERTS et al. PHYSICAL REVIEW B 73, 165318 �2006�

165318-8



in linear optics. So one expects to observe a line shift in the
linear absorption spectra depending on the Förster matrix
element VF.

Nonidentical quantum dots ��=10 meV�. For different
quantum dots energies the upper resonance energy increases
while the lower decreases with rising VF, respectively. Figure
1 shows the linear absorption spectra for different values of
VF for the coupled quantum dot resonances. The spectra are
plotted versus detuning of the uncoupled lower quantum dot
resonance. As can be seen, an energy shift  occurs that
depends on VF and is smaller than the value of the matrix
element. Following Eq. �17�, this shift is given by = 1

2 ��
−��2−4VF

2�. The shifted positions of the absorption lines
that result from this formula are plotted in the figure as ver-
tical lines.

As expected, its value is the same for both quantum dot
resonances, however the sign is different.

Identical quantum dots ��=0�. For identical quantum dots
the situation is different: from the discussion in Sec. IV it
follows that only one resonance can be excited optically and
therefore only one absorption line occurs in the spectrum. In
this case the transition energy simplifies to ��1+ �VF�, so the
shift is directly given by the value of the matrix element. The
corresponding absorption spectra can be seen in Fig. 2.

Comparing the two cases of different and identical quan-
tum dots, it can be recognized that the shift of the absorption
lines has the size of the Förster matrix element for identical
quantum dots while the shift is smaller when a difference in
the resonance energies of the dots occurs: therefore, the rela-
tive influence of the Förster coupling on the spectral proper-
ties becomes stronger for decreasing energy differences. Fur-
thermore, the lower absorption line gets weaker with
decreasing energy difference, leaving only one optically ex-
citable transition for coupled identical quantum dots.

B. Single-pulse excitation

Now we discuss the behavior of the system under the
influence of a strong coherent light pulse, thus entering the
nonlinear optical regime where a significant electron occupa-
tion in the upper level is built up. The spectrally narrow
pulse �5-ps pulse� is taken to be resonant to one of the single-
exciton resonances; the second resonance has a negligible
spectral overlap with the pulse spectrum. The pulse area is

defined by �=�−�
� dt�̃�t�.

To emphasize the effect of the interplay between electron-
light interaction and Coulomb coupling between the dots we
can safely ignore the radiative damping in this section, since
it contributes only on longer time scales than depicted here.

Nonidentical quantum dots. The resonance energy differ-
ence in the presence of Förster coupling is given by
��2+4VF

2 . In the case considered here ��=10 meV�, the use
of temporally long and spectrally narrow pulses with a tem-
poral width in the range of a few ps allows for selective
excitation of single, well-isolated resonances as occurring in
the linear optical spectra. The creation of biexcitons �transi-
tion to ��4	� in the two-dot system can thus be excluded for
sufficiently spectrally narrow single-pulse excitation. As a
consequence the biexcitonic shift has no influence on the

processes considered here �cf. Eq. �17��. For the following
calculations we therefore assume a biexcitonic shift of V11
=0 and investigate the influence of the Förster coupling on
single-pulse excitations.

We now investigate the case in which one of the two
resonances of the system is resonantly excited. The temporal
behavior of the electron density and polarization in the indi-
vidual dots is discussed for excitation of the lower as well as
the higher resonance of the coupled system.

Figure 3 shows density and polarization of both quantum
dots during excitation with a 5-ps pulse with pulse area � for
different values of the Förster matrix element. Here, the
pulse is resonant to the lower resonance energy, while in Fig.
4 the same is shown for resonant excitation of the higher
resonance. For resonant excitation of the lower resonance
�Fig. 3� the density and polarization of the lower-energy
quantum dot �left column� do not reach the final values of the
uncoupled system, which would be full inversion of the elec-
tron density and zero polarization. Furthermore, the higher-
resonance quantum dot reacts to the pulse as well, which is
not the case in the uncoupled system. When the higher reso-
nance is resonantly excited �Fig. 4�, it can be seen that the
density in this case passes a maximum and the absolute value
of the polarization reaches zero once, but rises to a nonzero
value afterwards. This difference results from the renormal-
ization of the Rabi frequency due to Förster coupling �see
Eq. �21� on the lower-energy resonance the � pulse acts as a
pulse with a diminished pulse area while for the higher reso-
nance it acts as a pulse of a higher pulse area�. Therefore the
dynamic quantities of the lower resonance do not reach the
final values corresponding to a that of a � pulse but the
quantities of the higher resonance pass them �a maximum of
the density and a zero of the polarization�.

Due to the formation of the new basis states in the
coupled case, the coherent pulse causes a transition between
the ground state and one of the new basis states ��2	
= �c1 �01	+c2 �10	�, ��3	= �−c2 �01	+c1 �10	�, which are su-
perpositions of excited electron states in both dots. Since
neither of the two coefficients is zero for nonvanishing VF,

FIG. 9. Temporal evolution of the electron densities for two-
pulse excitation with 5-ps pulses with a pulse area of � /2 and a
pulse delay of 20 ps. The Förster matrix element is taken to be
VF=1 meV.
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the upper-state electron density in a single dot cannot reach
the value of 1 anymore, even if only one of these resonances
is excited.

In particular, the formation of the new states implies that
as soon as there is Förster coupling in the system, it is not
possible to excite an electron localized in a single quantum
dot anymore using one resonant pulse �which is assumed to
be a plane wave and has no spatial selectivity to excite a
single dot�. This can be seen in Figs. 3 and 4 from the fact
that in each of the situations the density matrix elements of
both dots react to the pulse. To explicate this effect we have
plotted the electron densities of both dots in Fig. 5 for exci-
tation resonant to the higher-energy transition. The exciting
pulse is a � pulse with a width of 5 ps. In the inset the
electron density of the second dot and the sum of both den-
sities are shown around the maximum. The Förster coupling
is taken to be 1 meV in order to stress the effect of the
coupling, and the curve of the lower density is multiplied by
a factor of 10 for visibility. As one can see, the electron
densities of both dots are excited. The normalization of the
state can be seen in the inset of Fig. 5 from the fact that the
sum of the densities reaches the value of 1.

Identical quantum dots. In this case the dynamics is of
increased complexity. Though there is only one single-
exciton resonance that can be optically excited, due to the
small energy difference of the resonances, the biexcitonic
shift now plays a major role in the temporal dynamics: since
the single-exciton resonance energy in that case is given by
��1+ �VF� and the transition energy from the single-exciton
to the biexciton state is given by ��1− �VF � +V11, their en-
ergy difference is given by the Coulomb matrix element as
V11−2 �VF� �see Appendix A�. Whether or not the single-
excitonic resonances can be selectively excited spectrally
without excitation of the biexciton depends on the size of
both matrix elements. For small values �weak interaction� of
the coupling matrix elements a single pulse can simulta-
neously excite the single exciton as well as the biexciton, for
large values �strong interaction� selective excitation is pos-
sible.

These two cases show a different time behavior; cf. Fig. 6.
If only the single-exciton resonance is excited �strong inter-
action, large biexciton energy�, the final values of the density
matrix elements are temporally constant after the pulse, simi-
lar to the situation of different quantum dots. In Fig. 6 �left�
this can be seen for VF=0.1 meV and V11=5 meV and exci-
tation with a 5-ps � pulse. The maximum value of the ex-
cited electron density in this case is 0.5, since the single-
exciton states for identical quantum dots represent an equal
superposition of the excitation in each of the two dots �see
Eq. �23��. Due to the renormalization of the Rabi frequency
�for identical quantum dots the Rabi frequency for the single-
exciton resonance gets multiplied by a factor �2�, the elec-
tron density passes its maximum for excitation with a �
pulse.

The situation changes drastically when the biexcitonic
shift vanishes �representing an extreme weak Coulomb cou-
pling, V11=0�. Then the pulse creates a superposition of the
single-exciton and biexciton states leading to oscillations of
the absolute value of the polarization �see Appendix A�. This
is plotted in Fig. 6 �right�. The polarization oscillates with a

frequency determined by VF �see Appendix A�.
The difference in the time behavior between identical and

nonidentical quantum dots is of special importance for pos-
sible applications in quantum information theory: in quantum
information applications one has to be able to selectively
address the single qubits and prepare them in quantum me-
chanical states that change only when quantum operations
are performed. Furthermore, there has to be an interaction
mechanism between the qubits that allows the implementa-
tion of conditional operations. The Coulomb interaction is
one promising candidate for the implementation of condi-
tional operations.12 Nevertheless, from our results we see
that it also effects the possibility to selectively excite the
excitonic resonances that would constitute the qubit states.
The Förster interaction not only mixes the states but also
causes oscillations of the density matrix elements in the case
of identical quantum dots. Thus, for successful quantum in-
formation processing in a two-quantum-dot system one must
be able to carefully control both parts of the Coulomb inter-
action and to select quantum dot pairs, whose resonance en-
ergy difference allows for selective excitation.

1. Rabi oscillations

In contrast to the last section where we investigated the
time behavior during �-pulse excitation we now focus on the
dynamics as a function of the pulse area, especially on the
final state of the system. When the pulse area � is varied for
single-pulse excitation, Rabi oscillations are observed; i.e.,
the final value of the electron density after optical excitation
oscillates as a function of the pulse area.13

Nonidentical quantum dots. First we discuss the case in
which the different resonances are selectively excited by
spectrally narrow pulses �again, V11=0�. We plot the final
values of the electron density versus the pulse area for both
quantum dots with and without Förster coupling in Fig. 7.
Again, two situations are shown: the lower-energy resonance
is excited �top row� and the higher-energy resonance is ex-
cited �bottom row�. The strength of the coupling is set to the

FIG. 10. Temporal evolution of the electron densities for two-
pulse excitation with 5-ps pulses with a pulse area of � �renormal-
ized for the first pulse according to VF� and a pulse delay of 20 ps.
The Förster matrix element is taken to be VF=1 meV.
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high value of VF=1 meV to allow for a clear distinction of
the curves in the plots. The effect of the Coulomb coupling
on the Rabi oscillations is twofold: first, the amplitude of the
oscillations decreases in the presence of coupling, and sec-
ond, the oscillation period changes.

In Fig. 7 one can see that the amplitude of the oscillations
decreases for both quantum dots in the coupled case. The
oscillation amplitude is then expected to reduce to �c1�2,
which depends on VF �compare Eq. �18��.

The change in the oscillation period, however, is different
for the two resonances: for the lower-energy resonance the
oscillation period increases �Fig. 7, top row�, while for one
with the higher resonance energy the period decreases �Fig.
7, bottom row�. This is again due to the different renormal-
ization of the Rabi frequency; cf. Eq. �20�. Accordingly, for a
given pulse area of �, the density on the first dot has not yet
reached its maximum, whereas the density in the second dot
has already passed through its maximal value as seen in Figs.
5 and 6 for the case of a � pulse.

Identical quantum dots. The behavior for identical quan-
tum dots regarding the occurrence of Rabi oscillations de-
pends strongly on the possibility to selectively excite the
single-excitonic and biexcitonic resonances.

When the biexcitonic shift is small, the possibility to se-
lectively excite the resonances depends on the magnitude of
VF: in Fig. 8 �top� Rabi oscillations of the upper electron
density are shown for V11=0 and varying VF for excitation
with a 5-ps pulse. For VF=1 meV the density oscillates be-
tween zero and 0.5 representing the case where only the
single-excitonic transition is excited since an energy differ-
ence of 1 meV allows for selective excitation. With decreas-
ing VF the maximal value of the density rises, since the biex-
citonic transition gets more and more excited. For small
values of VF the maximum converges to 1, leading to the
uncoupled case, where both the single-exciton and biexci-
tonic transitions are excited.

When the same situation is calculated for a biexcitonic
shift of V11=1 meV, the energy difference between the
single-excitonic and biexcitonic transition is big enough to
allow for selective excitation even for small values of the
Förster matrix element. Therefore one expects the electron
density to oscillate between zero and 0.5 for a wide range of
the Förster coupling. This can be seen in Fig. 8 �bottom�. The
oscillation period then decreases to �2, as expected from the
analytical discussion �cf. Eq. �22��. Only if the energy shift
due to Förster coupling reaches the size of the biexcitonic
shift, the single-excitonic and biexcitonic resonance can be
excited simultaneously again, which is the case for VF
=1/2V11. Then, again, the electron density reaches the value
of 1.

One has to stress here that as soon as there is Coulomb
coupling in the system of two identical quantum dots, the
only way to reach an electron density of 1 in one of the
quantum dots is to simultaneously excite the single-excitonic
and the biexcitonic resonance �as long as the quantum dots
cannot be spatially selectively excited�. In terms of quantum
information this implies that qubits represented by excitons
in the single dots cannot be manipulated sufficiently. There-
fore a resonance energy of the quantum dots that allows for
selective excitation of the single-excitonic resonances is of

vital importance for quantum information applications of
such a system.

2. Two-pulse excitation

For optical implementations of quantum information pro-
cessing the behavior of a qubit system under more complex
situations than single-pulse excitation is essential to know.
Complex operations on qubits would be implemented by ap-
plying a number of pulses with differing resonance energies,
pulse areas, and pulse lengths. For example, the implemen-
tation of the CNOT operation in Ref. 12 involves a series of
two pulses. As a next step we therefore investigate the effects
of the Coulomb interaction occurring during two-pulse exci-
tation of the system.

In this subsection we describe the following situation: the
system is excited by two spectrally narrow light pulses, each
of them being resonant to one of the two single-excitonic
resonances. Since only one of the resonances can be excited
for identical quantum dots, we only describe the case of dif-
ferent quantum dots here. In two-pulse excitation the driving
light field not only causes transitions between the ground
state and one of the excited states but between the ground
and two excited states. As a result the state of the system can
be a superposition of three states of different energies, de-
pending on the pulse area of the two exciting pulses, leading
to new effects in the time behavior of the system. Analogous
to the case of single-pulse excitation of identical quantum
dots, oscillations of the density matrix elements occur.

In Fig. 9 the two upper electron densities of the two quan-
tum dots are shown for excitation with two pulses, each hav-
ing a pulse area of �=0.5�. The pulses have a temporal
width of 5 ps, and the time delay between the pulses is
20 ps. Again the biexcitonic shift is set to zero. Starting with
the second pulse, both electron densities start oscillations
that continue after the second pulse ended. The densities os-
cillate in antiphase, so the sum of the densities is constant.
The oscillations arise from the fact that each pulse creates an

FIG. 11. Differential transmission spectra �DTS� for a system of
two uncoupled quantum dots for different time delays. The radiative
damping is �= �500 ps�−1. The probe pulse excites the higher-
energy resonance; shown is the energy region around the lower-
energy resonance.
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equal superposition of the ground and the respective excited
state. Therefore, after the second pulse the state resembles a
superposition of the ground and two excited states. Since
both excited states contain an upper electron state in each
dot, but with different energies, the electron density in each
dot starts to oscillate.

Since the oscillations depend on the creation of a super-
position of the two excited states, they vanish if the state
created by the series of pulses does not contain both excited
states. This is the case if the pulses do not create a
superposition—for example, when both pulse areas have the
value �=� �renormalized for the first pulse according to the
value of VF�. Then the first pulse changes the state from ��0	
to ��1	 and the second pulse changes the state from ��1	 to
��3	. This situation is shown in Fig. 10: the resulting densi-
ties do not oscillate.

IX. DIFFERENTIAL TRANSMISSION SPECTRA

The analysis of differential transmission spectra �DTS� is
one way to obtain information about the Coulomb coupling
parameters from experiment.16 Here, we describe the follow-
ing experimental situation: The quantum dot sample is ex-
cited with a pump pulse of area �=� and a small spectral
linewidth, which is resonant to the higher resonance of the
coupled system. This results in the formation of an exciton in
the resonantly excited state, which then decays due to radia-
tive damping. Transmission spectra of a spectrally broad
probe pulse with a small pulse area ��=0.01�� are taken
with varying time delay relative to the pump pulse. It has to
be emphasized here that in the presence of Coulomb cou-
pling the pulse area has to be renormalized to achieve the
desired excitation, since the excitation applies for new eigen-
states. This is in accordance with the experimental situation,
where one would define a � pulse by the resulting maximum
electron density.

Differential transmission spectra represent the difference
of the probe spectra with and without the pump pulse.2,23 The
DTS can be calculated as follows:

DTS��� =
T��� − T0���

T0���
� − ���� = �0��� − ���� ,

�34�

where �0��� and ���� denote the probe absorption without
and with the pump laser. The differential transmission spec-
tra are calculated using the following parameters: resonance
energy difference of the two quantum dots, �=10 meV; ra-
diative damping constant �=1/500 ps; temporal widths of
the pump pulse and probe pulse, 2 ps and 100 fs, with pulse
areas of �=� and �=0.01�, respectively. Positive time de-
lay denotes the probe following the pump pulse. The plotted
spectra show the differential transmission of the nonresonant
quantum dot versus the detuning to the uncoupled resonance
for different time delays between pump and probe pulse.
Since the probe pulse is spectrally broad, it can excite all
resonances of the coupled system. Especially the biexcitonic
transition can be excited if a single exciton has been created
by the pump pulse. Therefore this method provides informa-
tion about both parts of the Coulomb coupling.

Without a Coulomb interaction �see Fig. 11� the nonlinear
optical Stark effect causes oscillations for negative time de-
lay and a dispersive line shape for small delay times,23 also
for single quantum dots.24 This dispersive line shape repre-
sents the spectral shift of the two Coulomb interaction
mechanisms, however, have different effects on the spectra:
First of all, they are internal fields and cause a contribution
long after the action of the pump pulse—i.e., at positive time
delays. The biexcitonic shift causes an energy shift which
results in a dispersive line shape. Since the shift is an intrin-
sic property of the coupled dot system �cf. Eq. �17��, it does
not depend on an interaction of pump and probe pulse.
Therefore it can be observed for either positive and negative
time delay, as seen in Fig. 12 for a biexcitonic shift V11
=0.1 meV. Depending on the magnitude and sign of the
biexcitonic shift it can cancel the effect of the optical Stark
effect, as observed in recent experiments.16 This is the case
in Fig. 12: the dispersive line shape is reversed compared to
Fig. 11.

FIG. 12. DTS for two quantum dots coupled by the diagonal
Coulomb interaction for different time delays: the biexcitonic shift
results from the matrix element V11=0.01 meV.

FIG. 13. DTS for two quantum dots coupled by the nondiagonal
Coulomb interaction for different time delays: the Förster matrix
element VF has a value of VF=0.1 meV.
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The impact of the Förster effect on the DTS is completely
different, which can be seen in Fig. 13. Here the DTS are
shown for VF=0.1 meV. Although Förster coupling also
causes a line shift, this shift does not depend on the presence
of the pump pulse. Therefore there is no resulting dispersive
line shape in the DTS. Due to the resulting energy transfer, it
rather leads to an absorptive line shape at the shifted reso-
nance. This can also be seen from the analytical discussion
�see Appendix A�.

It has to be stressed that the Förster effect results in much
weaker signatures in the DTS compared to the biexcitonic
shift, especially with respect to the magnitude of the matrix
elements. To show this we plot the DTS for a fixed time
delay of �t= +2 ps �Fig. 14�. The biexcitonic shift is taken to
be 0.01 meV, and the Förster effect varies between 0.0 and
0.1 meV. Even for VF=0.1 meV, where the Förster matrix
element is one order of magnitude larger than the biexcitonic
shift, the line shape is not strongly modified. Even the line
shift of 0.001 meV caused by VF=0.1 meV is only barely
noticeable, since it is too small. As a consequence it is much
more difficult to obtain information about the Förster matrix
element from differential transmission spectra than about the
biexcitonic shift.

X. CONCLUSIONS

We have shown that the Förster coupling affects single-
pulse excitation of coupled quantum dots and Rabi oscilla-
tions in two ways: the maximum value of the single-electron
densities decreases due to Förster coupling and the period of
the Rabi oscillations is renormalized. For different quantum
dots the period of the lower-energy resonance increases; the
one of the higher resonance decreases with rising strength of
the Förster coupling. The amplitude is always diminished.
For identical quantum dots only one resonance can be opti-
cally excited in the presence of Förster coupling, with de-
creased amplitude and period of the Rabi oscillations. Both
effects are of special importance for quantum information
applications, since they influence the possibility to coher-

ently control qubits in quantum dot systems by optical
means. We have also discussed the temporal dynamics of the
system during pulsed excitation; the development of the sys-
tem in time depends sensitively on the relative magnitudes of
the coupling parameters, the differences in resonance ener-
gies of the two dots, and the spectral width of the pulses.

The discussion of qualitative and quantitative influences
of Coulomb coupling on differential transmission spectra
confirms recent experimental results obtained by Unold et
al.16 Nevertheless, we have shown that the Förster coupling
causes much weaker signatures in these experiments than the
biexcitonic shift. Therefore it seems advisable to use other
experimental techniques to determine the strength of the
Förster coupling in quantum dot systems.

Typically the restriction to a two-level system and one
fixed polarization �either circular or linear� fails if the fine-
structure splitting is in the same order in comparison to the
interaction energy like Förster or biexciton contributions. In
this sense, our system must be regarded as a first model
approach and the Förster and biexciton coupling strength
was arbitrarily chosen to illustrate basic effects.
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APPENDIX A: TEMPORAL EVOLUTION OF STATES FOR
IDENTICAL QUANTUM DOTS DURING SINGLE-

PULSE EXCITATION

If the two Coulomb-coupled quantum dots are identical
��1=�2�, the system of basis states and eigenenergies has the
form

��1	 = �00	, �1 = � �0 + V00,

��2	 =
1
�2

�− �01	 + �10	�, �3 = � �0 + � �1 − �VF� + V01,

��3	 =
1
�2

��01	 + �10	�, �2 = � �0 + � �1 + �VF� + V01,

��4	 = �11	, �4 = � �0 + 2 � �1 + V11. �A1�

To emphasize the effect of the Förster matrix element on the
temporal evolution we neglect the diagonal terms V00 and
V01 in the following discussion. The resonance energies for
the creation of a single exciton are the given by

��1	 → ��3	:�E13 = � �1 + �VF� ,

��1	 → ��2	:�E12 = � �1 − �VF� �A2�

and the resonance energies for the creation of a biexciton by

��3	 → ��4	:�E34 = � �1 − �VF� + V11,

FIG. 14. DTS for two quantum dots for a biexcitonic shift of
V11=0.01 meV and different values of the Förster matrix element.
The spectra are shown for fixed time delay of �t=2 ps.

THEORY OF ULTRAFAST NONLINEAR OPTICS OF¼ PHYSICAL REVIEW B 73, 165318 �2006�

165318-13



��2	 → ��4	:�E24 = � �1 + �VF� + V11. �A3�

Depending on the size of the coupling matrix elements
and the pulse width there are different possible regimes for
the excitation of the system �which is initially in the ground
state ��1	� with one coherent laser pulse. In the following
these regimes are compared for excitation with a pulse that
creates an equal superposition of the ground and excited
states �in the uncoupled system this would be achieved with
a pulse of pulse area �= �

2 ; in the presence of Coulomb
coupling, the area has to be renormalized�:

�i� Both Coulomb matrix elements are big enough to al-
low for selective excitation: then, the pulse creates a super-
position of the ground and resonant excited states �for ex-
ample, ��3	�. The created state will have the form

��	 =
1
�2

��00	 − i��3	� =
1
�2
��00	 − i

1
�2

��01	 + �10	��
→ ���t�	 =

1
�2
��00	ei�0t − i

1
�2

��01	 + �10	�ei��0+�1+�VF�/��t� .

�A4�

The corresponding density matrix is given by


̂���t�	 =
1

2�00	�00� −
i

�2
���10	�00� + �01	�00��ei��1+�VF�/��t

− ��00	�10� + �00	�01��e−i��1+�VF�/��t�� +
1

2
��01	�01�

+ �10	�10� + �01	�10� + �10	�01��� . �A5�

The reduced density matrices of the individual quantum dot
electrons are then given by

Tr�
̂���t�	�2 =
3

4
�0	�0� −

i
�2

�1	�0�ei��1+�VF�/��t +
i

�2
�0	

	�1�e−i��1+�VF�/��t +
1

4
�1	�1� ,

Tr�
̂���t�	�1 =
3

4
�0	�0� −

i
�2

�1	�0�ei��1+�VF�/��t +
i

�2
�0	

	�1�e−i��1+�VF�/��t +
1

4
�1	�1� . �A6�

As one can see, the nondiagonal terms representing the po-
larizations show a time dependence of ei��1+�VF�/��t. Therefore,
in this case the absolute value of the individual polarizations
shows no time dependence. The diagonal terms representing
the single-electron densities show no time dependence at all.

�ii� Small VF, small V11: the single-excitonic resonance
cannot be excited selectively from the biexcitonic resonance.
In this case the �

2 pulse can excite the single-excitonic tran-
sition �00	→ ��3	 and the biexcitonic transition ��3	→ ��4	,
simultaneously. The created state has the form

��	 =
1
�2
��00	 −

i
�2

���3	 − i��4	��
=

1
�2
�00	 −

i
�2

� 1
�2

��01	 + �10	� − i�11	��
→ ���t�	 =

1
�2
�00	ei�0t −

i
�2

� 1
�2

��01	 + �10	�ei��0+�1+�VF�/��t

− i�11	ei��0+2�1+2V11/��t� . �A7�

The corresponding density matrix then reads as


̂���t�	 =
1

2
�00	�00� −

i

2
���10	�00� + �01	�00��ei��1+�VF�/��t

− ��00	�10� + �00	�01��e−i�2�1+�VF�/��t��
−

1
�2

�+ �00	�11�e−i��1+V11/��t − �11	�00�e−i��1+V11/��t�

+
1

4
��01	�01� + �10	�10� − �01	�10� − �10	�01��

+  i

2�2
���01	�11� + �10	�11��e−i��1−2�VF�/�+V11/��t

− ��11	�01� + �11	�10��ei��1−2�VF�/�+V11/��t�

+
1

2
�11	�11�� , �A8�

and the reduced density matrices follow as

Tr�
̂���t�	�2 =
3

4
�0	�0� − � i

4
ei��1+�VF�/��t +

i

4�2
ei��1−�VF�/�+V11/��t�

	�1	�0� + � i

4
e−i��1+�VF�/��t

+
i

4�2
e−i��1−�VF�/�+

V11
�

�t��0	�1� +
1

4
�1	�1�

Tr�
̂���t�	�1 =
3

4
�0	�0� − � i

4
ei��1+�VF�/��t +

i

4�2
ei��1−�VF�/�+V11/��t�

	�1	�0� + � i

4
e−i��1+�VF�/��t

+
i

4�2
e−i��1−�VF�/�+V11/��t��0	�1� +

1

4
�1	�1� . �A9�

Here, the diagonal parts show no time dependence. For the
case of V11=0 the nondiagonal parts have a time dependence
of that is a sum of the two exponentials ei��1+�VF�/��t and
ei��1−�VF�/��t with differing factors leading to an oscillation of
the absolute value of the polarization with a frequency of
�=

�VF�
� . In contrast to that the electron densities show no time

dependence in this case.
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APPENDIX B: ANALYTICAL CALCULATION OF
DIFFERENTIAL TRANSMISSION SPECTRA

The system of equations of motion describing the pump
and probe experiments can be solved analytically for positive
time delays: we do this by assuming that the density matrix
elements are weakly damped and can be taken as constant
during excitation with short, weak probe pulses. Then the
absorption spectrum of the probe pulse can be calculated
using Fourier transformation for the system in the ground
state as well as for the system that was excited by the strong
pump pulses. The difference of these two spectra constitutes
the differential transmission spectrum. We have to emphasize
that the dynamic interaction between pump and probe pulse
is not taken into account by this method.

Starting with the system of equations of motion we apply
the Fourier transformation. Assuming that the exciting pulse
can be described by a  function we get the following system
of equations:

− i�
vc,1��� = �− i��1 − �0� − ��
vc,1��� −
i

2�2
�nv,1�0�

− nc,1�0�� + � iVF

�
��− 
vc,2��� + 2
ccvc

* ����

− 2i
Vcc

�

cccv

* ��� , �B1�

− i�
vc,2��� = �− i��2 − �0� − ��
vc,2��� −
i

2�2
�nv,2�0�

− nc,2�0�� + � iVF

�
��− 
vc,1��� + 2
cccv

* ����

− 2i
Vcc

�

ccvc

* ��� , �B2�

− i�nc,1��� = ��− nc,1��� − nc,1
* ���� −

i

2�2
�
vc,1�0�*

− 
vc,1�0�� −
iVF

�
�
cvcv��� − 
cvcv

* ���� ,

�B3�

− i�nc,2��� = ��− nc,2��� − nc,2
* ���� −

i

2�2
�
vc,2

* �0�

− 
vc,2�0�� −
iVF

�
�
cvcv

* ��� − 
cvcv���� ,

�B4�

− i�
cccc��� = − 4�0
cccc��� −
i

2�2
�

cccv�0� + 
ccvc�0��

− �
cccv�0�* + 
ccvc
* �0��� , �B5�

− i�
cvcv��� = �− i��2 − �1� − 2��
cvcv��� +
i

2�2

�
vc,2�0�

− 2
ccvc
* �0�� + �− 
cv,1�0� + 2
cccv�0���

+
iVF

�
�− nc,1��� + nc,2���� , �B6�

− i�
cccv��� = − i�− �1 + �0 − 2
Vcc

�
� − 3��
cccv���

+
i

2�2

�nc,2�0� − 2
cccc�0� + 
cvcv�0��

− 
ccvv�0�� − � iVF

�
�
ccvc��� , �B7�

FIG. 15. DTS for two quantum dots for a biexcitonic shift of
V11=0 meV and two different values of the Förster matrix element.

FIG. 16. DTS for two quantum dots for a biexcitonic shift of
V11=0.01 meV and two different values of the Förster matrix
element.
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− i�
ccvc��� = − i�− �2 + �0 − 2
Vcc

�
� − 3��
ccvc���

−
i

2�2
„
ccvv�0� − 

cvcv�0�*�0� + �nc,1�0�

− 2
cccc�0���… − � iVF

�
�
cccv��� , �B8�

− i�
ccvv��� = �− i− �1 − �2 + 2�−
Vcc

�
+ �0��

− 2��
ccvv��� −
i

2�2
�2
ccvc�0� + 2
cccv�0�

− 
vc,2�0�* − 
vc,1
* �0�� �B9�

This system of linear equations can be solved analytically by
using the following initial conditions.

�i� Without the pump pulse the system is in the ground
state. All density matrix elements of the reduced system are
zero at t=0.

�ii� With the pump pulse �of area �, renormalized accord-
ing to Eq. �21�� the system is excited to the higher-energy

single-excitonic resonance ��3	= �c2 �10	+c1 �01	�. The cor-
responding initial conditions are nc1= �c2�2 ,nc2= �c1�2 for the
electronic densities and 
cvcv=c1c2

* for the density matrix el-
ements. The remaining terms of the reduced system are zero
initially.

Solving the system of equations for these two sets of ini-
tial conditions we obtain a solution for the polarization with
and without the pump pulse from which the transmission
spectra for both situations can be calculated. The difference,
constituting the differential transmission spectra, is plotted
for two situations calculated numerically in Sec. VII.

�i� No biexcitonic shift, strong Förster coupling �see Fig.
15�. It can clearly be seen that with rising Förster matrix
element an absorptive line occurs.

�ii� A biexcitonic shift of Vcc=0.01 meV, strong Förster
coupling �see Fig. 16�. One can see the occurrence of a dis-
persive line shape due to the biexcitonic shift and the fact
that there is almost no difference between the spectra for the
two different values of VF. To show this effect more clearly,
we plotted the spectra in a smaller region around the reso-
nance �bottom�.

These results correspond to the numerical evaluation for
�t→ +�, shown in Figs. 13 and 14.
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